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Abstract — Controlling complex networks accompanied by common conformity behavior is a
fundamental problem in social and physical science. Conformity behavior that individuals tend
to follow the majority in their neighborhood is common in human society and animal communi-
ties. Despite recent progress in understanding controllability of complex networks, the existent
controllability theories cannot be directly applied to networks associated with conformity. Here
we propose a simple model to incorporate conformity-based decision making into the evolution
of a network system, which allows us to employ the exact controllability theory to explore the
controllability of such systems. We offer rigorous theoretical results of controllability for represen-
tative regular networks. We also explore real networks in different fields and some typical model
networks, finding some interesting results that are different from the predictions of structural and
exact controllability theory in the absence of conformity. We finally present an example of steer-
ing a real social network to some target states to further validate our controllability theory and
tools. Our work offers a more realistic understanding of network controllability with conformity
behavior and can have potential applications in networked evolutionary games, opinion dynamics
and many other complex networked systems.

Copyright © EPLA, 2015

Introduction. — In the past four years, we have wit-
nessed the rapid development of the controllability theory
for complex networked systems [1-5]. Understanding our
ability to control a variety of complex networks is a step-
ping stone towards achieving ultimate control of them, one
of the key research goals in contemporary science [6-12]. A
dynamical system is controllable if it can be driven from
any initial state to any desired final state with infinite
time by external controllers. We call the nodes controlled
by external controllers driver nodes. Since the seminal
work of Liu et al. [1], in which a general controllabil-
ity framework for directed complex networks is offered,
much effort has been devoted to applying the theoretical
tools to investigate controllability of complex networks in
many different fields, and to improving the controllability
framework so as to broaden its application scope [13-19].
In particular, a more general controllability framework,

(2) B-mail: wenxuwang@bnu.edu.cn
(®)E-mail: bhwang@ustc.edu.cn

named exact controllability of complex networks, has been
proposed [2,15]. The tools offered by the improved frame-
work can be applied to networks with any structural prop-
erties, including both directed and undirected networks
with arbitrary link weights. The exact controllability the-
ory can yield the same results as Liu’s theory when both
theories are applicable. More importantly, the exact con-
trollability theory is based on eigenvalues and geometrical
multiplicity of network matrix, which greatly facilitates
the analysis in virtue of highly developed knowledge of
network spectral properties in network science.

Despite the development of the controllability theories,
there still exists a certain gap between the theoretical
frameworks and real complex networked systems. Specif-
ically, the controllability theories are applicable to the
canonical linear time-invariant system & = Ax+ Bu, where
vector x captures the states of nodes and state matrix A
captures the interaction patterns among nodes. In general,
A is the transpose of the network matrix, i.e., the network
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structure. The simple model of networked systems in some
scenarios may be not sufficient to characterize real sys-
tems. For example, intrinsic nodal dynamics that plays a
significant role in the collective behavior of a complex sys-
tem is omitted [20,21], rendering the findings based on the
original controllability frameworks unrealistic to some sys-
tems. The problem has been fully addressed quite recently,
but only for linear nodal dynamics [20]. Another exam-
ple is that the controllability of some biological networks
predicted by the theories is inconsistent with experimental
findings, especially for protein and gene networks [22,23].
This conflict stems from the difference between the inter-
action patterns in theoretical models and that in real bio-
logical systems. To solve this problem, a modified model
accompanied by a quite different controllability theory is
introduced to better mimic real biological systems and ex-
plore their controllability theoretically [24].

In analogy with biological systems, similar problems
hide in social networked systems because social interac-
tion patterns are not incorporated into the state matrix A.
A representative example is conformity behavior [25,26].
Matrix A merely reflects the relationship structure among
individuals, but fully neglects conformity behavior during
the evolution of a social network. Conformity behavior is
quite common in society and animal communities. Some
laboratorial experiments have revealed that in evolution-
ary games taking place in complex networks, people highly
tend to follow the majority in their neighborhood rather
than learn from some specific neighbors [27]. Human
brain substrates of long-term memory conformity have
been discovered in experiments as well [28]. In a group of
animals, such as chimpanzees and monkeys, experiments
have demonstrated that conformity behavior in terms of
social learning facilitates the form of social and cultural
norms [29,30]. Conformity behavior also plays a significant
role in achieving consensus in a group of moving animals,
such as fishes and birds [31-35]. Thus, it is imperative
to incorporate conformity behavior into the controllability
framework to better understand the controllability of so-
cial networked systems, which has not been tackled so far.

In this paper, we aim at exploring the controllability of
complex networks with conformity behavior by relying on
the exact controllability theory. We propose a simple and
general network model to capture conformity behavior in
decision-making processes of individuals, and show how to
employ the exact controllability theory to identify the min-
imum number of driver nodes for fully steering the system
to any target state. We explore the controllability that
is defined by the ratio of the minimum number of drivers
to the network size, of a variety of regular and complex
networks with conformity, finding some interesting results
that are different from the predictions of structural and
exact controllability theory in the absence of conformity.
We finally present an example of steering a small social
network, in which evolutionary games take place, to sev-
eral target states by controlling driver nodes with mini-
mum number. Our work opens a new route to applying

the controllability framework to real social networks in a
more realistic manner, and our results are more practi-
cal than those obtained directly using the controllability
framework without considering conformity behavior.

Model. — We consider nodes in the networks that are
occupied by individuals. Initially, all individuals are al-
lowed to choose their strategies in a continuous region
[0,1]. In other words, the strategies of individuals are
continuous with lower and upper limits. In evolutionary
games, 0 and 1 denote complete defection and coopera-
tion, respectively. In opinion spreading dynamics, 0 and
1 denote complete support of opinion 1 and 2, respec-
tively. A value between 0 and 1 indicates the tendency
of a player to choose 0 or 1. For memory-one strategy
games in the presence of conformity behavior [36,37], the
strategy of a player used in next round is determined by
her/himself and her/his neighborhood together. For ex-
ample, for a fair player, the probability to cooperate is de-
termined by the fraction of cooperators among neighbors
in the previous round: z(t 4+ 1) = j(¢)/n(t), where j(t)
and n(t) are the number of cooperators and neighbors in
t round, respectively [38]. The support degree of players
to an opinion also tends to be consistent with other co-
players in the neighborhood. These behaviors constitute
nothing but conformity.

In the following, we take the evolutionary game as a rep-
resentative example to formulate our controllability frame-
work. Because of the conformity behavior, the probability
to cooperate (strategy) for a player is proportional to the
average cooperation probability among her /his co-players
(neighbors) in the previous round:

m(t+1) = (t) ks (1)
j=1

where x;(t) is the strategy of node ¢’s neighbor j, n; is the
number of neighbors of node i, k; = Zjvzl A;j is the degree
of node i and A;; is the connectivity matrix. Equation (1)
indicates that player ¢« makes decisions in the next round
according to the average cooperation tendency in 4’s neigh-
borhood in the current round, a typical conformity behav-
ior. Particularly, if all of the neighbors of i are complete
cooperators or defectors, ¢ in the next round will choose to
fully cooperate 0 or defect 1, respectively. Thus, the strat-
egy evolution of the networked system can be formulated
into the following linear equations:

zy(t+1) EYoo0 .00 z1(t)
Ta(t+1) 0 k' ... 0 T (t)
= Al
: 0 0 : :
oy (t+1) 0 0 - ky xn(t)

or z(t+1) = K~tAx(t), where we use K ! (if k; = 0, we
set k; ' = 0) to denote the diagonal matrix consisting of
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Controlling complex networks with conformity behavior

Table 1: Eigenvalues and minimum number of driver nodes
of regular unweighted, undirected graphs with conformity
behavior. NBY™T denotes the minimum number of drivers
calculated from the maximum geometric multiplicity. ¢ =
1,2,--- , N and the geometric multiplicity of eigenvalues is in-
dicated in “()” for fully connected networks. The details can
be found in the appendix.

Network Eigenvalue NAMT
. (g—D)=
Chain cos " 1
Ring network COSW 2
Fully connected network — (N —1),1(1) N —1

the inverse of node degrees, and K ~! captures the confor-
mity behavior.

For the discrete time system (2), the underlying frame-
work of controllability is the same as for continuous time
systems. Therefore, the controllability of system (2) can
be investigated by using the exact controllability the-
ory [2]. Specifically, because matrix K ~'A is asymmetric,
the minimum number Np of driver nodes is determined
by the maximum geometric multiplicity:

Np = max{p(\)}, 3)
where ()\;) = N — rank(\; Iy — K ~1A) is the geometric
multiplicity of distinct eigenvalues A; of the matrix K1 A.
If network K ~'A is sparse, according to the efficient for-
mula of the exact controllability theory, we have

Np = max{1, N — rank(K ' A)}. (4)
For a dense network with identical link weights w, Np is
given by

Np = max{1, N — rank(wly + K~ *A)}. (5)
The efficient formula allows us to compute Np in a much
more efficient manner. The controllability of a network is
defined by the ratio of the number Np of driver nodes to
the network size N: np = Np/N.

According to the exact controllability theory [2], we im-
plement the elementary column transformation to identify
all linear correlations in matrix AMIy — KA, which is
able to yield all driver nodes located via control matrix B
to ensure

(6)

where \M is the eigenvalue corresponding to the maximum
geometric multiplicity.

rank[]\M Iy — K714, B] = N,

Results. — We first explore the controllability of chain,
ring networks and other regular networks with conformity
behavior. For regular networks, their eigenvalues can be
calculated precisely (see appendix for details), accounting
for rigorous theoretical predictions of Np based on the ex-
act controllability theory. Table 1 shows theoretically the
eigenvalues corresponding to the maximum multiplicity

Table 2: Exact controllability measures of real undirected and
directed networks with conformity behavior. For each network,
we show its type, name and density of driver nodes calculated
in the real network. np and nnon-p denote the minimum frac-
tion of drivers calculated from the maximum geometric multi-
plicity of eq. (3) including conformity and without conformity,
respectively. D and U denote directed network and undirected
network, respectively. For data sources and references, see Sup-
plementary Information of ref. [2].

Type Name Class 7np  Mpon-D
Food web Grassland D 0.5227 0.5227
Little Rock D 0.7541 0.7541

Seagrass D 0.3265 0.3265

Silwood park D 0.7662 0.7662

St. Martin Island D 0.4000 0.4000

Ythan D 0.5185 0.5185

Electronic circuits s208a D 0.2377 0.2377
s420a D 0.2341 0.2341

s838a D 0.2324 0.2324

Neuronal Celegans D 0.1650 0.1650
Trust Prison inmate D 0.1343 0.1343
WikiVote D 0.6656 0.6656

Social network Dolphins U 0.0323 0.0323
Football U  0.0087 0.0087

karate U 0.2941 0.2941

Polbooks U  0.0095 0.0095

Metabolic C. elegans U  0.3245 0.3245
Transportation ~ USA top-500 Airport U  0.2500 0.2500

and Np of three undirected regular networks. We see that
the eigenvalues are different from those without confor-
mity behavior [2], but Np are the same as that in the ab-
sence of conformity. Moreover, we can see that chain and
ring networks are much easier to be controlled than fully
connected networks with conformity behavior. Nearly all
nodes need to be controlled to ensure fully control of a
fully connected network. This finding is quite different
from the prediction of the structural controllability theory
that from the structural point of view without conformity,
a single driver node is sufficient to fully control a fully
connected network. For a network with conformity be-
havior, Np is determined by both coupling matrix A and
matrix K ~'. Insofar as the network is fully connected, we
can simply derive Np nodes based on the efficient formula
given in eq. (5):

Np = max{1, N —rank(wly + K~tA)} -

= max{l, N —rank(wEyN)} = N — 1, @
where w = 1/(N —1) and Ey is a matrix in which all
elements are 1.

Table 2 shows the exact controllability measure of some
real-undirected and -directed networks. Overall, the bi-
ological networks need a larger fraction of driver nodes,
whereas the social networks only need a smaller fraction of
driver nodes to achieve full control. Moreover, the undi-
rected networks are easier to control than directed net-
works. Note that here the controllability is determined
by matrix K ~'A. The matrix, because of K !, becomes
asymmetric, fundamentally different from the symmetric
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Fig. 1: (Color online) Exact controllability of networks with-
out conformity (dashed line) and including conformity (sym-
bols). Exact controllability measure np as a function of the
connecting probability p for (a) directed and unweighted ER
random networks (DER); (b) undirected and unweighted ER
random networks (UER); (c) undirected ER random networks
with random link weights (WER); (d) np wvs. the average de-
gree for undirected and unweigthed scale-free networks with
power-law exponent 3. Each data point is obtained by cal-
culation of maximum geometric multiplicity of eq. (3) and an
average of 20 independent realizations. The error bars denote
the standard deviation and NN is the network size.

network matrix A. Thus, np of networks with confor-
mity supposes to be different from that as determined by
A without conformity. However, we find that np of the
empirical networks with conformity is exactly the same as
that in the absence of conformity. This result stems from
the sparsity of most real networks. In general, based on
the results in ref. [2], link weights do not play a signifi-
cant role in np in sparse networks. For matrix K 1A, its
main difference from matrix A lies in the element values in
K1 A rather than the positions of nonzero elements, ac-
counting for similar controllability to the network charac-
terized exclusively by A without conformity, as displayed
in table 1.

Figure 1(a) shows np as a function of the connecting
probability p for directed and unweighted Erd&s-Rényi
(ER) random networks. We find that, for sparse networks,
the fraction of driver nodes np decreases monotonically
with connecting probability p. This indicates that con-
trollability is promoted by higher density of connections
for sparse networks. By contrast, for sufficiently large p,
np increases as p increases because of the impact of iden-
tical link weights. Eventually, when p approaches 1, we
nearly need to control all nodes, which is similar to the
result of the fully connected network in table 1. This
finding holds for different network sizes. Especially, by
comparing np without conformity (dashed line) and in-
cluding conformity (symbols), we find that, for directed
dense ER networks, conformity behavior can promote the
controllability, while fig. 1(b) shows that, for undirected
and unweighted random networks, np without conformity

and including conformity for undirected networks are ex-
actly the same. For dense networks, two nodes ¢ and j
generally have the same out-neighbors. If the elements
w;; and wy; in matrix \; Iy — K14 also meet the con-
dition \; = —w;; = —wj; (w is the weight caused by
conformity), then, the i-th and j-th columns are linearly
dependent, and we need to control one of the nodes. For
undirected networks, in-degree equals out-degree, and we
surely have w;; = ki, (1)™' = wji = kin(j)~! (for sparse
networks, w;; = w;; = 0,1). However for directed net-
works, two nodes which have the same out-neighbors may
have distinct in-degrees, which causes w;; # w;;. At this
point, two columns are linearly independent, and then np
of the network including conformity is smaller than that
without conformity. Figure 1(c) shows np for undirected
random networks with random link weights. We see that
np decreases monotonically with connecting probability p.
In contrast to the result in fig. 1(a) and (b), due to ran-
dom link weights, np no longer increases with connecting
probability p for dense networks. Figure 1(d) shows np
as a function of the average degree (k) for unweighted
scale-free networks (scale-free networks are constructed
by using static model [39]). We find that, np decreases
rapidly to 1/N as (k) increases. np of unweighted scale-
free networks and scale-free with random link weights are
nearly the same, indicating the effect of link weights is
small. Figure 1 demonstrates that, on the one hand,
for sparse networks, higher densities of links favor con-
trollability. On the other hand, for dense networks with
identical link weights, higher densities of links render con-
trollability weaker.

To further validate our controllability methods, we use
our tools to control a real small social network to some tar-
get states. Figure 2(a) shows the network constituted by
22 participants from Arizona State University [40]. There
is a link between two individuals if they are friends with
each other. Figure 2(b) shows the evolution of strategies
in the absence of any external inputs. We find that, the
strategies of nodes in the connected component rapidly
achieve a homogeneous stable state, determined by both
the initial strategy distribution and the network structure.
We use our method to identify driver nodes (nodes in pur-
ple in fig. 2(a)) and impose external control signals to
control the strategies of individuals to some desired states.
Identified driver nodes include two isolated nodes and two
nodes of degree 2. Under our control, three desired final
states are achieved from the same initial strategy distribu-
tion within 300 rounds, as shown fig. 2(b)—(e), providing
strong support for the applicability of our control method
to networks with conformity effect.

Conclusion. — We have proposed a simple model to
characterize conformity dynamics taking place in complex
networks and demonstrated how to control the networks
by applying the exact controllability theory, including
identifying driver nodes with minimum number of a
variety of regular, model and empirical networks, and
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0 100 200 0 100
T T

200 300

Fig. 2: (Color online) Structure and control of a social network.
(a) Structure of the social network. The driver nodes are filled
circles, including two isolated nodes 3, 10 and nodes 4, 15 whose
degree k = 2. The size of a node is proportional to its degree.
(b) Time evolving of nodes’ strategies without external control
inputs. Time evolving of nodes’ strategies by controlling the
driver nodes and final states are set as (c) x; =0, (d) z; = 0.2
and (e) z; = 1 for all of the nodes.

implementing an actual control of a small social network.
Due to the conformity effect, the original symmetric net-
work matrix is converted into an asymmetric matrix rep-
resentation, which supposes to render controllability quite
different. We have found that the difference is only obvi-
ous for directed dense networks. That is, conformity can
promote the controllability. However, for other networks,
this difference is actually small. For sparse networks, the
small difference is ascribed to the small influence of link
weights, although they induce the matrix asymmetry. For
very dense undirected networks with identical link weights,
the asymmetric property becomes weak, yielding approx-
imately a symmetric matrix with identical weights. Thus,
the controllability of very dense undirected networks with
identical link weights and with conformity effect is quite
close to that without conformity. Nevertheless, incorpo-
rating the conformity effect into social networks will offer a
more exact and deeper understanding of our ability to con-
trol such networks in terms of steering a minimum number
of driver nodes. Our work also sheds light into how to use
controllability theories to explore complex networks in a
more realistic manner rather than directly and carelessly
use the theories.

L

This work is funded by The National Natural Science
Foundation of China (Grant Nos. 11275186, 91024026,
FOM20140F001).

Appendix: controllability of regular graphs. —

Undirected chain graph.  Matrix K 1A for an undi-
rected chain with N nodes is [2,41,42]

0
0.5 0 05
K 1'A= , (A1)
05 0 05
i 0 1 0|

where all unwritten elements are zeros. The eigenvector «
of eigenvalue \ satisfies (A\[y — K~1A)a = 0, which can
be written for each component as
)\041 — Qg = 0,
—0.5a—1 + Aay, — 0.5a41 =0 2<k<N-1),

—an_1+ Xay =0.

(A.2)
The boundary requirement is
ag = Aoy = ag,
{ 0 1 2 (A.3)
ON41 = AN = QN_1.
Then eq. (A.2) can be written as
—g—1 + 2 a —agy1 =0 (O <k<N — 1). (A4)

The general solution is oy = ar¥ 4brk, where r; and ry are
the roots of the corresponding polynomial 22 —2\+1 = 0,
which satisfy

14 1o = 2),
{ L (A.5)

rire = 1.

Substituting the general solution into boundary require-
ment, we obtain

a 11— 3
b 1—r% (46)
a 1- r3 rév_l '
b o 1 —7"% T{V_l'
_ 2mq/=T
Thus, ()Y~ = 1 or 2 = ¥ (=01, N 1)
27 (q—1)y/—1
or 2 = e N1 (¢=1,2,---,N). Substituting ry =
2m(g—1)/=T
7“1€QN7*1 into the last equation of (A.6) yields
m(g=1)v=T1
ro=e N-1
_mla=1)v=T (A7)
ro =€ N—1
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Substituting eq. (A.7) into the first equation of (A.5), we

have
. C (¢g— D)

= cos . (A8
) =cos LT (A8)
To calculate the maximum geometric multiplicity of all
distinct eigenvalues, we need to obtain the rank of matrix

()\IN — KﬁlA):

- 5 1 -
-05 A 05
My —K 1A= . (A9)
-05 X —05
0 -1

For each eigenvalue of K~ 'A, the determinant of matrix
det(\[y — K7'A) = 0. But the eigenvalues of K14
are not the eigenvalues of the cofactor matrix of KA.
Hence, det(D,,—1[My — K~'A4]) # 0. So, rank Ay —
K~1A] = N — 1 for all eigenvalues and p()\;) = 1.

Ring network and fully connected network.  For the
ring network and the fully connected network, all nodes
have the same degree. Then, matrix K~ 'A equals
the identity matrix times the reciprocal of the degree.
The eigenvalues of the matrix K ' A are the same as the
eigenvalues of the matrix A multiplied by the reciprocal
of the degree. According to refs. [2,41,42], we can ob-
tain the eigenvalues of KA for the ring network are
Ay = cos 2D with A, = An_qio and 8(\,) = 2(q =
1,2,---,N) for N > 4. For undirected networks, the
maximum geometric multiplicity equals the maximum al-
gebraic multiplicity. Hence, p(\;) = 2.

The eigenvalues for the fully connected network and the
respective algebraic multiplicities are Ay = 1, §(\1) = 1

and Ay = — ', 6(A2) = N — 1 and p(A) = N — 1.
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